如图,矩形ABCD中,AB=6,BC=10,点P在边BC上,点Q在边CD上,
(1)如图1,将△ADQ沿AQ折叠,点D恰好与点P重合,求CQ的长;
(2)如图2,若CQ=2,且△ABP与△PCQ相似,求BP的长;
(3)若点Q是CD边上的一点,且BC上不存在满足AP⊥PQ的点P,请探究:此时CQ的长必须满足什么条件?
如图在Rt△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D。若DE垂直平分AB,求∠B的度数。
已知,求下列各式的值。
(1)(2)
先化简,再求值:,其中
。
某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:
甲 |
乙 |
|
进价(元/部) |
4000 |
2500 |
售价(元/部) |
4300 |
3000 |
该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元,[毛利润=(售价-进价)×销售量]
(1)该商场计划购进甲、乙两种手机各多少部?
(2)通过商场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润。
如图①,将两个完全相同的三角形纸片ABC与DEC重合放置,其中∠C=90°,∠B=∠E=30°。
(1)如图②,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,DE交BC于点F,则线段DF与AC有怎样的关系?请说明理由。
(2)当△DEC绕点C旋转到图③所示的位置时,设△BDC的面积为S1,△AEC的面积为S2。
猜想:S1与S2有怎样的数量关系?并证明你的猜想。