如果函数y=f(x)的导函数的图像如右图所示,给出下列判断:
(1) 函数y=f(x)在区间(3,5)内单调递增;
(2) 函数y=f(x)在区间(-1/2,3)内单调递减;
(3) 函数y=f(x)在区间(-2,2)内单调递增;
(4) 当x= -1/2时,函数y=f(x)有极大值;
(5) 当x=2时,函数y=f(x)有极大值;
则上述判断中正确的是
当时,
在
上是减函数
知为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为.;
设是已知平面
上所有向量的集合,对于映射
,记
的象为
。若映射
满足:对所有
及任意实数
都有
,则
称为平面
上的线性变换。现有下列命题:
①设是平面
上的线性变换,
,则
②若是平面
上的单位向量,对
,则
是平面
上的线性变换;
③对,则
是平面
上的线性变换;
④设是平面
上的线性变换,
,则对任意实数
均有
。
其中的真命题是(写出所有真命题的编号)
如图,在每个三角形的顶点处各放置一个数,使位于的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别成等差数列.若顶点A,B,C处的三个数互不相同且和为1,则所有顶点上的数之和等于.