游客
题文

如图,已知抛物线的对称轴为直线,交轴于两点,交轴于点,其中点的坐标为(3,0)。

(1)直接写出点的坐标;
(2)求二次函数的解析式。

科目 数学   题型 计算题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

2016年6月19日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.

请根据图1、图2解答下列问题:

(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;

(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.

先化简,再求值: a ( a - 2 b ) + ( a + b ) 2 ,其中 a = - 1 b = 2

如图1,抛物线 y = a x 2 + ( a + 3 ) x + 3 ( a 0 ) x 轴交于点 A ( 4 , 0 ) ,与 y 轴交于点 B ,在 x 轴上有一动点 E ( m 0 ) ( 0 < m < 4 ) ,过点 E x 轴的垂线交直线 AB 于点 N ,交抛物线于点 P ,过点 P PM AB 于点 M

(1)求 a 的值和直线 AB 的函数表达式;

(2)设 ΔPMN 的周长为 C 1 ΔAEN 的周长为 C 2 ,若 C 1 C 2 = 6 5 ,求 m 的值;

(3)如图2,在(2)条件下,将线段 OE 绕点 O 逆时针旋转得到 OE ' ,旋转角为 α ( 0 ° < α < 90 ° ) ,连接 E ' A E ' B ,求 E ' A + 2 3 E ' B 的最小值.

在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.

(一)尝试探究

如图1,在四边形 ABCD 中, AB = AD BAD = 60 ° ABC = ADC = 90 ° ,点 E F 分别在线段 BC CD 上, EAF = 30 ° ,连接 EF

(1)如图2,将 ΔABE 绕点 A 逆时针旋转 60 ° 后得到△ A ' B ' E ' ( A ' B ' AD 重合),请直接写出 E ' AF =    度,线段 BE EF FD 之间的数量关系为   

(2)如图3,当点 E F 分别在线段 BC CD 的延长线上时,其他条件不变,请探究线段 BE EF FD 之间的数量关系,并说明理由.

(二)拓展延伸

如图4,在等边 ΔABC 中, E F 是边 BC 上的两点, EAF = 30 ° BE = 1 ,将 ΔABE 绕点 A 逆时针旋转 60 ° 得到△ A ' B ' E ' ( A ' B ' AC 重合),连接 EE ' AF EE ' 交于点 N ,过点 A AM BC 于点 M ,连接 MN ,求线段 MN 的长度.

如图1, OABC 的边 OC x 轴的正半轴上, OC = 5 ,反比例函数 y = m x ( x > 0 ) 的图象经过点 A ( 1 , 4 )

(1)求反比例函数的关系式和点 B 的坐标;

(2)如图2,过 BC 的中点 D DP / / x 轴交反比例函数图象于点 P ,连接 AP OP

①求 ΔAOP 的面积;

②在 OABC 的边上是否存在点 M ,使得 ΔPOM 是以 PO 为斜边的直角三角形?若存在,请求出所有符合条件的点 M 的坐标;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号