为了解学生对校园网站五个栏目的喜爱情况(规定每名学生只能选一个最喜爱的),学校随机抽取了部分学生进行调查,将调查结果整理后绘制成如下两幅不完整的统计图,请结合图中提供的信息解答下列问题:
(1)本次被调查的学生有 人,扇形统计图中 ;
(2)将条形统计图补充完整;
(3)若该校有1800名学生,估计全校最喜爱“校长信箱”栏目的学生有多少人?
(4)若从3名最喜爱“校长信箱”栏目的学生和1名最喜爱“时事政治”栏目的学生中随机抽取两人参与校园网站的编辑工作,用列表或画树状图的方法求所抽取的两人都最喜爱“校长信箱”栏目的概率.
如图,在平面直角坐标系中,二次函数 的图象经过平行四边形 的顶点 , 轴,垂足为点 .点 在 轴正半轴上,点 在 轴负半轴上,点 在 轴正半轴上,且 .
(1)求二次函数的表达式,并判断点 是否在该函数图象上;
(2)点 是线段 上一点,在线段 下方作 .
①当点 运动时,使 的一边 始终过点 ,另一边 交射线 于点 ,(不含点 与 重合的情形)设 , ,求 关于 的函数关系式,并求出 的取值范围.
②当 时,将 绕点 旋转,一条边 交线段 于点 ,另一条边 交线段 于点 ,连接 ,以 为直径作 ,设圆心 的坐标为 ,求 与 之间的函数关系式,并直接写出点 从点 运动到点 时圆心 运动的路径长.
如图,在 中, ,点 从点 向点 运动,点 从点 沿射线 方向运动,且 ,连接 交 于 .
(1)如图1,当 时,求证: ;
(2)如图2,当 时,① , ,则 ;
②过点 作 于点 ,探究线段 , , 之间的数量关系,直接写出结论,不需证明.
某手工编织厂生产一种旅游纪念品,现有60名工人进行手工编织(每人编织的效率相同),2天后抽出10名工人执行其他任务,其余工人继续编织生产;2天后从编织的工人中再抽出10名进行销售(每人每天的销售量相同).已知每人每天的销售量是编织量的5倍,下图是产品库存量 (件 与生产时间 (天 之间的函数关系图象.
(1)解释点 的实际意义;
(2)求每人每天的编织量和销售量;
(3)求 段所在的直线的函数表达式,并求出多少天后剩余库存量低于生产前的库存量.
如图,在 中, ,以 为直径的 交 于点 ,且点 是 的中点,连接 交 于点 ,连接 , .
(1)求证: ;
(2)若 , ,求 的长.