在平面直角坐标系中,已知曲线
(θ为参数),将
上的所有点的横坐标、纵坐标分别伸长为原来的
和2倍后得到曲线
,以平面直角坐标系
的原点
为极点,
轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线
.
(1)试写出曲线的极坐标方程与曲线
的参数方程;
(2)在曲线上求一点
,使点
到直线
的距离最小,并求此最小值.
(本小题6分):先化简,再求值:,其中x=
(本小题6分)计算:
有一个不透明的袋子,装有4个完全相同的小球,球上分别编有数字1,2,3,4.
(Ⅰ)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能被3整除的概率;
(Ⅱ)若先从袋中随机取一个球,该球的编号为a,将球放回袋中,然后再从袋中随机取一个球,该球的编号为b,求直线与圆
=
没有公共点的概率.
(Ⅲ)试求方程组的解
落在第四象限的概率.
某地区2008年至2014年农村居民家庭纯收入y(单位:千元)的数据如下表:
年份 |
2008 |
2009 |
2010 |
2011 |
2012 |
2013 |
2014 |
年份代号![]() |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
人均纯收入y |
2.9 |
3.3 |
3.6 |
4.4 |
4.8 |
5.2 |
5.9 |
(Ⅰ)求y关于的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2008年至2014年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2016年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:,
.
已知,
(Ⅰ)求的值;
(Ⅱ)求的值;
(Ⅲ)求的值.