有一个不透明的袋子,装有4个完全相同的小球,球上分别编有数字1,2,3,4.(Ⅰ)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能被3整除的概率;(Ⅱ)若先从袋中随机取一个球,该球的编号为a,将球放回袋中,然后再从袋中随机取一个球,该球的编号为b,求直线与圆=没有公共点的概率.(Ⅲ)试求方程组的解落在第四象限的概率.
(本小题满分12分) 命题p:对任意实数都有恒成立;命题q:关于的方程有实数根.若“p或q”为真命题,“p且q”为假命题,求实数的取值范围。
(本小题满分10分) 如图,在棱长为3的正方体中,. ⑴求两条异面直线与所成角的余弦值; ⑵求平面与平面所成的锐二面角的余弦值.
定义在上的函数,,当时,.且对任意的有。 (1)证明:; (2)证明:对任意的,恒有; (3)证明:是上的增函数; (4)若,求的取值范围。
已知函数,且 (1)求; (2)判断的奇偶性; (3)试判断在上的单调性,并证明。
已知满足,求函数的最大值和最小值
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号