( (本小题满分12分)
在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.
(1)、求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示);
(2)、求点P到平面ABD1的距离.
(本题16分)已知函数的最大值为
,最小值为
.
(1)求的值;
(2)求函数的最小值并求出对应x的集合.
(本题14分)已知角终边上一点
,求
的值
(本题12分)已知,求
的值
(本小题满分16分)
在直角坐标系xOy中,椭圆C1:=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:
的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
.
(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若
,求直线l的方程.
(本小题满分15分)
(文)已知直线与曲线
相切,分别求
的方程,使之满足:
(1)经过点
;(2)
经过点
;(3)
平行于直线
;
(理)如图,平面平面
,四边形
与
都是直角梯形,
,
,
分别为
的中点
(Ⅰ)证明:四边形是平行四边形;
(Ⅱ)四点是否共面?为什么?
(Ⅲ)设,证明:平面
平面
;