游客
题文

出租车司机小王某天上午营运是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,-2,+5,-1,+10,-3,-2,-12,+4,-5,+6.
(1)将最后一名乘客送到目的地时,小王距下午出车时的出发点多远?
(2)若汽车耗油量为0.05升/千米,这天下午小王的汽车共耗油多少升?

科目 数学   题型 解答题   难度 较易
知识点: 幂的乘方与积的乘方
登录免费查看答案和解析
相关试题

如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连接EF与边CD相交于点G,连接BE与对角线AC相交于点H, AE=CF,BE=EG。

(1)求证:EF//AC;
(2)求∠BEF大小;
(3)求证:

如图,点A是反比例函数上一点,作AB⊥x轴于点B,且△AOB的面积为2,点A坐标为(-1,m)。

(1)求k和m的值。
(2)若直线经过点A,交另一支双曲线于点C,求△AOC的面积。
(3)指出x取何值时,一次函数的值大于反比例函数的值,直接写出结果。
(4)在y轴上是否存在点P,使得△PAC的面积为6,如果存在,请求出点P的坐标;若不存在,请说明理由.

如图,在△AFC中,AF=AC,B是CF的中点,AH平分∠CAF,作CD⊥AH于D。

(1)证明四边形ABCD是矩形。
(2)若BD交AC于O,证明:OB//AF且OB= AF。
(3)若使四边形ABCD是正方形,需添加一个条件,请直接写出该条件。

如图,在等腰梯形ABCD中,AD//BC,AD="3" cm,BC="7" cm,∠B=60°,P为下底BC上一点(不与B、C重合),连接AP,过P点作PE交DC于E,使得∠APE=∠B.

(1)求证:△ABP∽△PCE;
(2)求等腰梯形的腰AB的长;
(3)在底边BC上是否存在一点P,使得DE:EC=5:3?如果存在,求出BP的长,如果不存在,请说明理由.

如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:).

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号