已知函数(
).
(1)判断的奇偶性;
(2)当时,求证:函数
在区间
上是单调递减函数,在区间
上是单调递增函数;
(3)若正实数满足
,
,求
的最小值.
已知函数f(x)= m·log2x + t的图象经过点A(4,1)、点B(16,3)及点C(Sn,n),其中Sn为数列{an}的前n项和,n∈N*.
(Ⅰ)求Sn和an;
(Ⅱ)设数列{bn}的前n项和为Tn , bn = f(an) – 1, 求不等式Tn£ bn的解集,n∈N*.
已知集合A=,B=(2a,a2+1).
(Ⅰ)当a=2时,求AB;
(Ⅱ)求使B A的实数a的取值范围.
某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级籽棉2吨、二级籽棉1吨;生产乙种棉纱1吨需耗一级籽棉1吨,二级籽棉2吨.每1吨甲种棉纱的利润为900元,每1吨乙种棉纱的利润为600元.工厂在生产这两种棉纱的计划中,要求消耗一级籽棉不超过250吨,二级籽棉不超过300吨.问甲、乙两种棉纱应各生产多少吨,能使利润总额最大?并求出利润总额的最大值.
如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC=,求AB的长.
设等差数列{}的前
项和为
,已知
=
,
.
(Ⅰ) 求数列{}的通项公式;
(Ⅱ)求数列{}的前n项和
;
(Ⅲ)当n为何值时,最大,并求
的最大值.