已知函数().(1)判断的奇偶性;(2)当时,求证:函数在区间上是单调递减函数,在区间上是单调递增函数;(3)若正实数满足,,求的最小值.
如图所示,已知以点为圆心的圆与直线相切,过点的动直线与圆相交于两点,是的中点,直线与相交于点. (1)求圆的方程; (2)当时,求直线的方程; (3)是否为定值?如果是,求出其定值;如果不是,请说明理由.
如图,在三棱柱中,. (1)求证:; (2)若,在棱上确定一点P,使二面角的平面角的余弦值为.
已知数列,满足,,若。 (1)求; (2)求证:是等比数列; (3)若数列的前项和为,求
在中,内角所对边长分别为,,. (1)求的最大值;(2)求函数的值域.
设函数. (1)在区间上画出函数的图象 ; (2)设集合. 试判断集合和之间的关系,并给出证明.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号