游客
题文

如图1,已知锐角△ABC中,CD.BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.

(1)连接DM,ME,猜想∠A与∠DME之间的关系,并写出推理过程;
(2)求证:MN⊥DE;
(3)若将锐角△ABC变为钝角△ABC,如图2,上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

某种商品的进价为每件50元,售价为每件60元.为了促销,决定凡是购买10件以上的,每多买一件,售价就降低0.10元(例如,某人买20件,于是每件降价0.10×(20-10)=1元,就可以按59元/件的价格购买),但是最低价为55元/件.同时,商店在出售中,还需支出税收等其他杂费1.6元/件.
(1)求顾客一次至少买多少件,才能以最低价购买?
(2)写出当出售x件时(x>10),利润y(元)与出售量x(件)之间的函数关系式;
(3)有一天,一位顾客买了47件,另一位顾客买了60件,结果发现卖了60件反而比卖了47件赚的钱少.为了使每次卖的越多赚的钱也越多,在其他促销条件不变的情况下,最低价55元/件至少要提高到多少?为什么?

甲、乙两山地自行车选手进行骑行训练.他们在同地出发,反向而行,分别前往A地和B地.甲先出发一分钟且先到达A地.两人到达目的地后均以原速按原路立即返回,直至两人相遇.下图是两人之间的距离y(千米)随乙出发时间x(分钟)之间的变化图象.请根据图象解决下列问题:

(1)甲的速度为千米/小时,乙的速度为千米/小时;
(2)在图中的括号内填上正确的数值;
(3)乙出发多长时间两人首次相距22.6千米?

如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.

(1)判断AP与⊙O的位置关系,并说明理由;
(2)求PD的长.

如图,小敏、小亮从A,B两地观测空中C处一个气球,分别测得仰角为30°和60°,A,B两地相距100 米.当气球沿与BA平行地飘移10秒后到达C′处时,在A处测得气球的仰角为45°.

(1)求气球的高度(结果精确到0.1米);
(2)求气球飘移的平均速度(结果保留3个有效数字).

如图,AD∥BC,∠A=90°,以点B为圆心,BC长为半径画弧,交射线AD于点E,连接BE,过点C作CF⊥BE,垂足为F,求证:AB=FC.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号