如图,M是线段AC的中点,N是线段BC的中点.
(1)如果AC=8cm,BC=6cm,求MN的长.
(2)如果AM=5cm,CN=2cm,求线段AB的长.
如图,已知,在Rt△ABC中,∠BAC=90°.
实践与操作:
(1)①利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法):作线段AC的垂直平分线MN,垂足为O;
②连接BO,并延长BO到点D,使得OD=BO,连接AD、CD;
③分别在OA、OC的延长线上取点E、F,使AE=CF,连接BF、FD、DE、EB.
推理与运用:
(2)①求证:四边形BFDE是平行四边形;
②若AB=4,AC=6,求当AE的长为多少时,四边形BFDE是矩形.
某单位准备印刷一批书面材料,现有两个印刷厂可供选择,甲厂的费用分为制作费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲厂的费用y(千元)与书面材料数量x(千份)的关系见表:
书面材料数量x(千份) |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
......... |
甲厂的印刷费用y(千元) |
1 |
1.5 |
2 |
2.5 |
3 |
3.5 |
4 |
......... |
乙厂的印刷费用y(千元)与书面材料数量x(千份)的函数关系图象如图所示.
(1)请你写出甲厂的费用y与x的函数解析式,并在图中坐标系中画出甲厂的费用y与x的函数图象.
(2)请写出乙厂费用y与x的函数解析式,试求出当x在什么范围内时乙厂比甲厂的费用低?
(3)现有一客户需要印10千份书面材料,请问你如果是客户你如何选择?
如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.
(1)当t=3时,求直线的解析式;
(2)当直线通过点M时,求直线l的解析式;
(3)若点M,N位于l的异侧,确定t的取值范围.
在某小区的A处有一个凉亭,道路AB、BC、AC两两相交于点A、B、C,并且道路AB与道路BC互相垂直,如图所示.已知A与B之间的距离为20cm,若有两个小朋友在与点B相距10cm的点D处玩耍,玩累了他们分别沿不同的路线D→B→A,D→C→A到凉亭A处喝水休息,已知路线D→B→A与D→C→A路程相等,求AC的长度.
计算
(1)(4﹣3
)+2
(2)
(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:
甲 |
0 |
1 |
0 |
2 |
2 |
0 |
3 |
1 |
2 |
4 |
乙 |
2 |
3 |
1 |
1 |
0 |
2 |
1 |
1 |
0 |
1 |
请计算两组数据的方差.