某工厂对某产品的产量与单位成本的资料分析后有如下数据:
月 份 |
1 |
2 |
3 |
4 |
5 |
6 |
产量x千件 |
2 |
3 |
4 |
3 |
4 |
5 |
单位成本y元/件 |
73 |
72 |
71 |
73 |
69 |
68 |
(Ⅰ)求单位成本y与月产量x之间的线性回归方程.(其中已计算得:,结果保留两位小数)
(Ⅱ)当月产量为12千件时,单位成本是多少?
如图,在三棱锥中,
分别为
的中点.
(1)求证:平面
;
(2)若平面平面
,且
,
,
求证:平面平面
.
已知,
(1)当时,解不等式
;(2)若
,解关于x的不等式
.
(本题12分)在平面直角坐标系中,已知椭圆
的离心率为
,其焦点在圆
上.
⑴求椭圆的方程;
⑵设、
、
是椭圆上的三点(异于椭圆顶点),且存在锐角
,使
.
①试求直线与
的斜率的乘积;
②试求的值.
(本题12分)已知椭圆的离心率
,过
、
两点的直线到原点的距离是
.
(1)求椭圆的方程 ;
(2)已知直线交椭圆于不同的两点
、
,且
、
都在以
为圆心的圆上,求
的值.
(本题12分)已知中心在原点的双曲线的右焦点为,右顶点为
.
(1)试求双曲线的方程;
(2)过左焦点作倾斜角为的弦
,试求
的面积(
为坐标原点).