如图,矩形ABCD中,AB="10" cm,BC="6" cm.现有两个动点P,Q分别从A,B同时出发,点P在线段AB上沿AB方向作匀速运动,点Q在线段BC上沿BC方向作匀速运动,已知点P的运动速度为1 cm/s,运动时间为t s.
(1)设点Q的运动速度为cm/s.
①当△DPQ的面积最小时,求t的值;
②当△DAP∽△QBP相似时,求t的值.
(2)设点Q的运动速度为a cm/s,问是否存在a的值,使得△DAP与△PBQ和△QCD这两个三角形都相似?若存在,请求出a的值;若不存在,请说明理由.
一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h,两车之间的距离为y km,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:
(1)慢车的速度为km/h,快车的速度为km/h;
(2)解释图中点D的实际意义并求出点D的坐标;
(3)求当x为多少时,两车之间的距离为300km.
如图,在菱形ABCD中,E为边BC的中点,DE与对角线AC交于点M,过点M作MF⊥CD于点F,∠1=∠2.
求证:(1)DE⊥BC;
(2)AM=DE+MF.
如图,AB是⊙O的直径,过⊙O上的点C作切线交AB的延长线于点D,∠D=30º.
(1)求∠A的度数;
(2)过点C作CF⊥AB于点E,交⊙O于点F,CF=4,求
的长度(结果保留π).
将A,B,C,D四人随机分成甲、乙两组参加羽毛球比赛,每组两人.
(1)A在甲组的概率是多少?
(2)A,B在同一组的概率是多少?