游客
题文

当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=3m的解大2?

科目 数学   题型 解答题   难度 中等
知识点: 多元一次方程组
登录免费查看答案和解析
相关试题

(本题6分)先化简,再求值:(a﹣2)2+a(a+4),其中

如图,在直角坐标系中点A(2,0),点P在射线(x<0)上运动,设点P的横坐标为a,以AP为直径作⊙C,连接OP、PB,过点P作PQ⊥OP交⊙C于点Q.

(1)证明:∠AOP=∠BPQ;
(2)当点P在运动的过程中,线段PQ的长度是否发生变化,若变化,请用含a的代数式表示PQ的长;若不变,求出PQ的长;
(3)当tan∠APO=时,①求点Q坐标;②点D是圆上任意一点,求QD+OD的最小值.

【试题背景】已知:l ∥∥k,平行线l与与k之间的距离分别为123,且1 =3 = 1,2 =" 2" .我们把四个顶点分别在l、、k这四条平行线上的四边形称为“格线四边形”.
【探究1】(1)如图1,正方形为“格线四边形”,于点,的反向延长线交直线k于点. 求正方形的边长.
【探究2】(2)矩形为“格线四边形”,其长 :宽 =" 2" :1 ,则矩形的宽为.(直接写出结果即可)
【探究3】(3)如图2,菱形为“格线四边形”且∠=60°,△是等边三角形,于点, ∠=90°,直线分别交直线l、k于点.求证:
【拓 展】(4)如图3,l ∥k,等边三角形的顶点分别落在直线l、k上,于点,且="4" ,∠=90°,直线分别交直线l、k于点,点分别是线段上的动点,且始终保持=于点
猜想:在什么范围内,?直接写出结论。

如图1是立方体和长方体模型,立方体棱长和长方体底面各边长都为1,长方体侧棱长为2,现用60张长为6宽为4的长方形卡纸,剪出这两种模型的表面展开图,有两种方法:
方法一:如图2,每张卡纸剪出3个立方体表面展开图;
方法二:如图3,每张卡纸剪出2个长方体表面展开图(图中只画出1个).



(图1)(图2)(图3)


设用x张卡纸做立方体,其余卡纸做长方体,共做两种模型y个.
(1)在图3中画出第二个长方体表面展开图,用阴影表示;
(2)写出y关于x的函数解析式;
(3)设每只模型(包括立方体和长方体)平均获利为w(元),w满足函数,若想将模型作为教具卖出,且制作的长方体的个数不超过立方体的个数,则应该制作立方体和长方体各多少个,使获得的利润最大?最大利润是多少?

已知二次函数的图象过(0,-6)、(1,0)和(-2,-6)三点.


(1)求二次函数解析式;
(2)求二次函数图象的顶点坐标;
(3)若点A(m-2n,-8mn-10)在此二次函数图象上,求m、n的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号