游客
题文

如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.

(1)数轴上点B表示的数是      ,点P表示的数是      (用含t的代数式表示);
(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q时出发.求:
①当点P运动多少秒时,点P与点Q相遇?
②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?

科目 数学   题型 解答题   难度 中等
知识点: 数轴 两点间的距离
登录免费查看答案和解析
相关试题

按照题目的要求,分别画出图形,并回答有关问题.
(1)画长3cm的线段AB,取AB的中点O,过O作线段AB的垂线,在上任取一点P,连接PA,PB,量一量线段PA,PB的长度,你发现什么结论?
(2)画一个∠ABC,作出∠ABC的角平分线BD,在BD上任取一点P(除B点外),过P分别作PM⊥BA,PN⊥BC,垂足分别是M,N,量一量线段PM,PN的长度,你发现什么结论?

在下列各图中,用三角板分别过点C画线段AB的垂线.

在如图所示的方格纸上过点P画直线AB的平行线.

如图,已知,点A, D上,点B, C上,试说明△EGO与△FHO面积相等。

问题情境:如图①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);
特例探究:如图②,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB="AC," CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;
归纳证明:如图③,点BC在∠MAN的边AM、AN上,点EF在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB="AC," ∠1=∠2=∠BAC.求证:△ABE≌△CAF;
拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号