椭圆,作直线
交椭圆于
两点,
为线段
的中点,
为坐标原点,设直线
的斜率为
,直线
的斜率为
,
.
(1)求椭圆的离心率;
(2)设直线与
轴交于点
,且满足
,当
的面积最大时,求椭圆
的方程.
已知数列{an}的前n项和为
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若,求数列{Cn}的前n项和Tn
建造一断面为等腰梯形的防洪堤(如图),梯形的腰与底边所角为60°,考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为m2,为了使堤的上面与两侧面的水泥用料最省,要求断面的外周长(梯形的上底BC与两腰长的和)最小.如何设计防洪堤,才能使水泥用料最省.
已知直线过点
(1)若直线在坐标轴上的截距相等,求直线
的方程;
(2)若直线与坐标轴的正半轴相交,求使直线
在两坐标轴上的截距之和最小时,直线
的方程。
在△ABC中,角A,B,C所对的边长分别是a,b,c.(1)若sin C + sin(B-A)=" sin" 2A,试判断△ABC的形状;(2)若△ABC的面积S = 3,且c =
,C =
,求a,b的值
已知的顶点、
、
,
边上的中线所在直线为
.(1)求
的方程;(2)求点A关于直线
的对称点的坐标。