某学生参加3个项目的体能测试,若该生第一个项目测试过关的概率为,第二个项目、第三个项目测试过关的概率分别为x,y(),且不同项目是否能够测试过关相互独立,记为该生测试过关的项目数,其分布列如下表所示:(1)求该生至少有2个项目测试过关的概率;(2)求的数学期望.
(本小题满分12分)已知实数满足方程. (1)求的最大值和最小值; (2)求的最大值与最小值.
(本小题满分12分)命题是的反函数,且,命题不等式对任意实数恒成立,若或为真命题,且为假命题,求实数的取值范围.
已知函数. (1)判断函数在上的单调性,不用证明; (2)若在上恒成立,求实数的取值范围; (3)若函数在上的值域是,求实数的取值范围.
设函数是定义在上的增函数,是否存在这样的实数,使得不等式对于任意都成立?若存在,试求出实数的取值范围,若不存在,请说明理由.
已知定义域为R的函数是奇函数. ①求实数的值; ②用定义证明:在R上是减函数; ③解不等式:.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号