某住宅小区在住宅建设时留下一块1798平方米的空地,准备建一个矩形的露天游泳池,设计如图所示,游泳池的长是宽的2倍,在游泳池的前侧留一块5米宽的空地,其它三侧各保留2米宽的道路及1米宽的绿化带请你计算出游泳池的长和宽
若游泳池深3米,现要把池底和池壁(共5个面)都贴上瓷砖,请你计算要贴瓷砖的总面积
阅读下面材料:解答问题
为解方程 (x2-1)2-5 (x2-1)+4=0,我们可以将(x2-1)看作一个整体,然后设 x2-1=y,那么原方程可化为 y2-5y+4=0,解得y1=1,y2=4.
当y=1时,x2-1=1,∴x2=2,∴x=±;当y=4时,x2-1=4,∴x2=5,∴x=±,
故原方程的解为 x1=,x2=-,x3=,x4=-.
上述解题方法叫做换元法;
请利用换元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0
如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC 将△ABC向x轴正方向平移5个单位得△A1B1C1,
再以O为旋转中心,将△A1B1C1旋转180°得△A2B2C2,画出平移和旋转后的图形,并标明
对应字母.
如图1,将三角板放在正方形
上,使三角板的直角顶点
与正方形
的顶点
重合,三角扳的一边交
于点
.另一边交
的延长线于点
.
求证:
;
如图2,移动三角板,使顶点
始终在正方形
的对角线
上,其他条件不变,题(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理
由:
如图3,将(2)中的“正方形
”改为“矩形
”,且使三角板的一边经过点
,其他条件不变,若
、
,求
的值.
某企业决定用万元援助灾区
所学校,用于搭建帐篷和添置教学设备。根据各校不同的受灾情况,该企业捐款的分配方案如下:所有学校得到的捐款数都相等,到第
所学校的捐款恰好分完,捐款的分配方法如下表所示. (其中
,
,
都是正整数)
分配顺序 |
分配数额(单位:万元) |
|
帐篷费用 |
教学设备费用 |
|
第1所学校 |
5 |
剩余款的![]() |
第2所学校 |
10 |
剩余款的![]() |
第3所学校 |
15 |
剩余款的![]() |
… |
… |
… |
第![]() |
![]() |
剩余款的![]() |
第![]() |
![]() |
0 |
根据以上信息,解答下列问题:写出
与
的关系式
当
时,该企业能援助多少所学校?
根据震区灾情,该企业计划再次提供不超过
万元的捐款,按照原来的分配方案援助其它学校.若
由 (2)确定,则再次提供的捐款最多又可以援助多少所学校?