某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)当销售单价为70元时,每天的销售利润是多少?
(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量的取值范围;
(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)
如图,BC⊥ED,垂足为O,∠A=27°,∠D=20°,求∠ACB与∠B的度数.
如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证DF∥AC.
证明:∵∠1=∠2(已知)
∠2=∠3,∠1="∠4" ()
∴∠3=∠4(等量代换)
∴_____∥_____ ( )
∴∠C=∠ABD ( )
∵∠C=∠D (已知 )
∴∠D=∠ABD (等量代换 )
∴DF∥AC
一个多边形的内角和等于1260°,求这个多边形的边数.
如图,请你在右图中建立直角坐标系,使汽车站的坐标是(3,1),并用坐标说明医院和学校的位置.
已知数轴上两点A、B对应的数分别为、3,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A,点B的距离相等,求点P对应的数;
(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;
(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,当遇到B时,点P立即以同样的速度向左运动……点P不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?