大润发超市进了一批成本为8元/个的文具盒。调查发现: 这种文具盒每个星期的销售量个)与它的定价
(元/个)的关系如图所示:
(1)求这种文具盒每个星期的销售量个)与它的定价
(元/个)之间的函数关系式(不必写出自变量
的取值范围)
(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?
(本小题9分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.
(1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?
(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?
(本小题8分)已知:如图,C,D是以线段AB为直径的⊙O上的两点,且四边形OBCD是菱形.求证:.
(本小题8分)已知抛物线.
(1)求证:此抛物线与x轴必有两个不同的交点;
(2)若此抛物线与直线的一个交点在y轴上,求m的值.
如图,利用一面墙(墙的长度为20m),用34m长的篱笆围成两个鸡场,中间用一道篱笆隔开,每个鸡场均留一道1m宽的门,设AB的长为x米。
(1)若两个鸡场总面积为96m2,求x;
(2)若两个鸡场的面积和为S,求S关于x的关系式;
(3)两个鸡场面积和S有最大值吗?若有,最大值是多少?
如图,抛物线与x轴交于A,B两点,与直线
相交于B,C两点,连结A,C两点。
(1)写出直线BC的解析式
(2)求△ABC的面积