已知椭圆:
,直线
交椭圆
于
两点.
(Ⅰ)求椭圆的焦点坐标及长轴长;
(Ⅱ)求以线段为直径的圆的方程.
已知函数.
(1)求函数的最大值,并写出
取最大值时
的取值集合;
(2)已知中,角
的对边分别为
若
求实数
的最小值.
A.(坐标系与参数方程)已知直线的参数方程为(为参数),圆
的参数方程为
(
为参数),则圆心
到直线的距离为_________.
B.(几何证明选讲)如右图,直线与圆
相切于点
,割线
经过圆心
,弦
⊥
于点
,
,
,则
_________.
C.(不等式选讲)若存在实数使
成立,则实数
的取值范围是_________.
已知椭圆的左右焦点分别为
、
,短轴两个端点为
、
,且四边形
是边长为2的正方形.
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点
满足
,连接
,交椭圆于点
,证明:
为定值;
(3)在(2)的条件下,试问轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
的交点?若存在,求出点Q的坐标;若不存在,请说明理由.
已知函数的定义域为
.
(1)求函数在
上的最小值;
(2)对,不等式
恒成立,求实数
的取值范围.
某市公租房的房源位于三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:
(1)恰有2人申请片区房源的概率;
(2)申请的房源所在片区的个数的分布列和期望.