某公司为了解用户对其产品的满意度,从,
两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);
(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
满意度评分 |
低于70分 |
70分到89分 |
不低于90分 |
满意度等级 |
不满意 |
满意 |
非常满意 |
记时间C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.
某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:
(Ⅰ)估计这次考试的及格率(60分及以上为及格)和平均分;
(Ⅱ)假设在段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,96,97,98,99,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率
已知关于x的方程:,
(1)若方程有两个实根,求实数的范围;
(2)设函数,记此函数的最大值为
,最小值为
,求
、
的解析式
假设关于某设备的使用年限x和所支出的维修费用y (万元),有如下的统计数据由资料知两变量呈线性相关,并且统计得五组数据的平均值分别为
,
,若用五组数据得到的线性回归方程
去估计,使用8年的维修费用比使用7年的维修费用多1.1万元,
(1)求回归直线方程;
(2)估计使用年限为10年时,维修费用是多少?
某射手在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为0.24、0.28、0.19、0.16、0.13.计算这个射手在一次射击中:
(1)至少射中7环的概率;
(2)射中环数不足8环的概率.
设集合,
.
(Ⅰ) 若,求实数
的取值范围;
(Ⅱ) 当时,不存在元素
使
与
同时成立,求实数
的取值范围.