如图,四棱锥中,底面是以
为中心的菱形,
底面
,
,
为
上一点,且
.
(1)求的长;
(2)求二面角的正弦值.
在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点。
(Ⅰ)证明:AC⊥SB;
(Ⅱ)求二面角N-CM-B的余弦值;
ABC中,a,b,c分别为内角A,B,C所对的边长,a=
,b=
,
,求边BC上的高.
(10分)已知是公差不为零的等差数列,
成等比数列.
(Ⅰ)求数列的通项;(Ⅱ)求数列
的前n项和
(本小题满分12分)
已知函数
(1)若,求曲线
在点
处的切线方程;
(2)若函数在其定义域内为增函数,求
的取值范围;
(3)在(2)的条件下,设函数,若在
上至少存在一点
,使得
成立,求实数
的取值范围.
(本小题满分12分)
已知椭圆经过点
其离心率为
(1)求椭圆的方程
(2)设直线与椭圆
相交于A、B两点,以线段
为邻边作平行四边形OAPB,其中顶点P在椭圆
上,
为坐标原点. 求
到直线
的距离的最小值.