如图,在Rt△ ACB中,∠ ACB=90°,以点 A为圆心, AC长为半径的圆交 AB于点 D, BA的延长线交⊙ A于点 E,连接 CE, CD, F是⊙ A上一点,点 F与点 C位于 BE两侧,且∠ FAB=∠ ABC,连接 BF.
(1)求证:∠ BCD=∠ BEC;
(2)若 BC=2, BD=1,求 CE的长及sin∠ ABF的值.
某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.
(1)求该商店3月份这种商品的售价是多少元?
(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?
如图,在四边形 ABCD中, AD∥ BC,∠ ABC=90°, AB= AD,连接 BD,点 E在 AB上,且∠ BDE=15°, DE=4 , DC=2 .
(1)求 BE的长;
(2)求四边形 DEBC的面积.
(注意:本题中的计算过程和结果均保留根号)
某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).
他们的各项成绩如下表所示:
候选人 |
笔试成绩/分 |
面试成绩/分 |
甲 |
90 |
88 |
乙 |
84 |
92 |
丙 |
x |
90 |
丁 |
88 |
86 |
(1)直接写出这四名候选人面试成绩的中位数;
(2)现得知候选人丙的综合成绩为87.6分,求表中 x的值;
(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.
如图,抛物线 y= ax 2+ bx+2与 x轴相交于 A(﹣1,0), B(4,0)两点,与 y轴相交于点 C.
(1)求抛物线的解析式;
(2)将△ ABC绕 AB中点 M旋转180°,得到△ BAD.
①求点 D的坐标;
②判断四边形 ADBC的形状,并说明理由;
(3)在该抛物线对称轴上是否存在点 P,使△ BMP与△ BAD相似?若存在,请求出所有满足条件的 P点的坐标;若不存在,请说明理由.