对于平面直角坐标系xOy中的点P和线段AB,给出如下定义:在线段AB外有一点P,如果在线段AB上存在两点C、D,使得∠CPD=90°,那么就把点P叫做线段AB的悬垂点.
(1)已知点A(2,0),O(0,0)
①若,D(1,1),E(1,2),在点C,D,E中,线段AO的悬垂点是______;
②如果点P(m,n)在直线上,且是线段AO的悬垂点,求
的取值范围;
(2)如下图是帽形M(半圆与一条直径组成,点M是半圆的圆心),且圆M的半径是1,若帽形内部的所有点是某一条线段的悬垂点,求此线段长的取值范围.
2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼 处,测得起点拱门 的顶部 的俯角为 ,底部 的俯角为 ,如果 处离地面的高度 米,求起点拱门 的高度.(结果精确到1米;参考数据: , ,
随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.
根据图中信息,解答下列问题:
(1)求本次调查的学生总人数,并补全条形统计图;
(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;
(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.
先化简,再求值: ,其中 .
(1)计算: .
(2)解不等式组:
如图,抛物线 经过 轴上的点 和点 及 轴上的点 ,经过 、 两点的直线为 .
①求抛物线的解析式.
②点 从 出发,在线段 上以每秒1个单位的速度向 运动,同时点 从 出发,在线段 上以每秒2个单位的速度向 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为 秒,求 为何值时, 的面积最大并求出最大值.
③过点 作 于点 ,过抛物线上一动点 (不与点 、 重合)作直线 的平行线交直线 于点 .若点 、 、 、 为顶点的四边形是平行四边形,求点 的横坐标.