如图,在△ABC中,∠B=90°,AB=6米,BC=8米,动点P以2米/秒的速度从A点出发,沿AC向点C移动,同时,动点Q以1米/秒的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动,设移动的时间为t秒.
(1)①当t=2.5秒时,求△CPQ的面积;
②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;
(2)在P、Q移动的过程中,当△CPQ为等腰三角形时,直接写出t的值;
甲、乙两辆货车分别从 、 两城同时沿高速公路向 城运送货物.已知 、 两城相距450千米, 、 两城的路程为440千米,甲车比乙车的速度快10千米 小时,甲车比乙车早半小时到达 城.求两车的速度.
某校在七、八、九三个年级中进行“一带一路”知识竞赛,分别设有一等奖、二等奖、三等奖、优秀奖、纪念奖.现对三个年级同学的获奖情况进行了统计,其中获得纪念奖有17人,获得三等奖有10人,并制作了如图不完整的统计图.
(1)求三个年级获奖总人数;
(2)请补全扇形统计图的数据;
(3)在获一等奖的同学中,七年级和八年级的人数各占 ,其余为九年级的同学,现从获一等奖的同学中选2名参加市级比赛,通过列表或者树状图的方法,求所选出的2人中既有七年级又有九年级同学的概率.
如图, , , .求证: .
(1)计算:
(2)化简:
已知二次函数 的图象过点 ,点 与 不重合)是图象上的一点,直线 过点 且平行于 轴. 于点 ,点 .
(1)求二次函数的解析式;
(2)求证:点 在线段 的中垂线上;
(3)设直线 交二次函数的图象于另一点 , 于点 ,线段 的中垂线交 于点 ,求 的值;
(4)试判断点 与以线段 为直径的圆的位置关系.