小华同学学习了第二十五章《锐角三角比》后,对求三角形的面积方法进行了研究,得到了新的结论:如图,已知锐角△ABC,则
(1)试证明上述结论;
(2)运用这个新的结论,请完成下题:如图,在等腰△ABC中,AB=AC=12厘米,点P从A点出发,沿着边AB移动,点Q从C点出发沿着边CA移动,点Q的速度是1厘米/秒,点P的速度是点Q速度的2倍,若它们同时出发,设移动时间为t秒,问:当t为何值时,?
(本小题满分6分)尺规作图:已知线段a,作一个等腰,使底边长为a,底边上的高为
.(要求:写出已知求作,保留作图痕迹,在所作图中标出必要的字母,不写作法和结论)
已知:
求作:
(本小题满分6分)解不等式组.
运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法. 如图1,在等腰三角形ABC中,AB=AC,AC边上的高为
,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为
、
.连接AM,可得结论
+
=
.当点M在BC延长线上时,
、
、
之间的等量关系式是.(直接写出结论不必证明).
应用:平面直角坐标系中有两条直线
:
、
:
,若
上的一点M到
的距离是1.请运用(1)的条件和结论求出点M的坐标.
张老师于2010年9月份在杭州买了一套楼房,当时(即9月份)在建行贷款96万元,贷款期限为20年,从开始贷款的下一个月起逐月偿还,贷款月利率是0.5%(每月还款数额=平均每月应还的贷款本金+月利息,月利息=上月所剩贷款本金数额×月利率).求张老师借款后第一个月的还款数额.
假设贷款月利率不变,请写出张老师借款后第n(n是正整数)个月还款数额p与n之间的函数关系式(不必化简).
在(2)的条件下,求张老师2011年10份的还款数额.
已知△ABC,∠ACB=90º,AC=BC,点E、F在AB上,∠ECF=45º,设△ABC的面积为S,说明AF·BE=2S的理由。