如图,在直三棱柱中,底面
是直角三角形,
,点
是棱
上一点,满足
.
(1)若,求直线
与平面
所成角的正弦值;
(2)若二面角的正弦值为
,求
的值.
某大型公益活动从一所名牌大学的四个学院中选出了名学生作为志愿者,参加相关的活
动事宜.学生来源人数如下表:
学院 |
外语学院 |
生命科学学院 |
化工学院 |
艺术学院 |
人数 |
![]() |
![]() |
![]() |
![]() |
(1)若从这名学生中随机选出两名,求两名学生来自同一学院的概率;
(2)现要从这名学生中随机选出两名学生向观众宣讲此次公益活动的主题.设其中来自外语学院的人数为
,令
,求随机变量
的分布列及数学期望
.
已知函数,
.
(1)求函数的最小正周期和单调递减区间;
(2)已知中的三个内角
所对的边分别为
,若锐角
满足
,且
,
,求
的面积.
已知函数.
(1)当时,求函数
的单调增区间;
(2)当时,求函数
在区间
上的最小值;
(3)记函数图象为曲线
,设点
,
是曲线
上不同的两点,点
为线段
的中点,过点
作
轴的垂线交曲线
于点
.试问:曲线
在点
处的切线是否平行于直线
?并说明理由.
已知数列,
满足
,
,
,
.
(1)求证:数列是等差数列,并求数列
的通项公式;
(2)设数列满足
,对于任意给定的正整数
,是否存在正整数
,
(
),使得
,
,
成等差数列?若存在,试用
表示
,
;若不存在,说明理由.
如图,已知,
,
,
分别是椭圆
的四个顶点,△
是一个边长为2的等边三角形,其外接圆为圆
.
(1)求椭圆及圆
的方程;
(2)若点是圆
劣弧
上一动点(点
异于端点
,
),直线
分别交线段
,椭圆
于点
,
,直线
与
交于点
.
(ⅰ)求的最大值;
(ⅱ)试问:,
两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.