操作探究:已知在纸面上有一数轴(如图所示),
操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与______表示的点重合;
操作二:(2) 折叠纸面,使-1表示的点与5表示的点重合,回答以下问题:
①-5表示的点与数_____表示的点重合;
②若数轴上A、B两点之间距离为15,其中A在B的左侧,且A、B两点经折叠后重合,求A、B两点表示的数是多少?
③ 已知在数轴上点M表示的数是,点M到第②题中的A、B两点的距离之和为30,求
的值.
在如图所示的方格中,每个小正方形的边长都是
,按下列要求画格点梯形(顶点都在格点上的梯形)并直接写出所画梯形的周长.
(1)在图1中画出一腰长为的梯形;
(2)在图2中画出一底边长为的梯形.
如图,点,
在
上,
,
,
,
与
交于点
,求证:
(1)计算:
(2)先化简,再求值:,其中
如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连结OA。
(1)求△OAB的面积;
(2)若抛物线经过点A。
①求c的值;
②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围(直接写出答案即可)。
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量(千克)随销售单价
(元/千克)的变化而变化,具体关系式为:
,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为
(元),解答下列问题:
(1)求与
的关系式;
(2)当取何值时,
的值最大?
(3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?