在线段 的同侧作射线 和 ,若 与 的平分线分别交射线 , 于点 , , 和 交于点 .如图,点点同学发现当射线 , 交于点 ;且 时,有以下两个结论:
① ;② .
那么,当 时:
(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出 的度数,写出 , , 长度之间的等量关系,并给予证明;
(2)设点 为线段 上一点, ,若 ,四边形 的面积为 ,求 的长.
已知函数 , .在同一平面直角坐标系中.
(1)若函数 的图象过点 ,函数 的图象过点 ,求 , 的值.
(2)若函数 的图象经过 的顶点.
①求证: ;
②当 时,比较 , 的大小.
如图,已知四边形 和四边形 为正方形,点 在线段 上,点 , , 在同一直线上,且 , ,连接 , , ,并延长 交 于点 .
(1)求 的值.
(2)求线段 的长.
把一个足球垂直水平地面向上踢,时间为 (秒 时该足球距离地面的高度 (米 适用公式 .
(1)当 时,求足球距离地面的高度;
(2)当足球距离地面的高度为10米时,求 ;
(3)若存在实数 , 当 或 时,足球距离地面的高度都为 (米 ,求 的取值范围.
如图,在 中,点 , 分别在边 , 上, ,射线 分别交线段 , 于点 , ,且 .
(1)求证: ;
(2)若 ,求 的值.