如图,三棱柱中,
平面
,
,
, 点
在线段
上,且
,
.
(Ⅰ)求证:直线与平面
不平行;
(Ⅱ)设平面与平面
所成的锐二面角为
,若
,求
的长;
(Ⅲ)在(Ⅱ)的条件下,设平面平面
,求直线
与
所成的角的余弦值.
设Sn是等差数列{an}的前n项和,已知与
的等比中项为
,
与
的等差中项为1,求等差数列{an}的通项。
设.
(1)判断函数y=f(x)的奇偶性;
(2)求函数y=f(x)的定义域和值域.
设关于x的函数y=2cos2x﹣2acosx﹣(2a+1)的最小值为f(a),试确定满足的a的值,并对此时的a值求y的最大值.
设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.
(I)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.
(II)求函数y=f(x)的单调增区间;
(III)画出函数y=f(x)在区间[0,π]上的图象.
(1)已知tanα=2,求+ sin2α﹣3sinα•cosα的值。
(2)已知角α终边上一点P(﹣,1),求
的值