如图所示,用长为l的轻质细线将质量为m的小球悬挂于O点.小球在外力作用下静止在A处,此时细线偏离竖直的夹角为α.现撤去外力,让小球由静止释放,摆到最低点B时,细线被O点正下方的小钉子挡住,小球继续向左摆动到细线偏离竖直方向β(β<α)角时,垂直撞击挡板.此后,小球摆到右侧最高点时细线与竖直方向夹角也为β.不计空气阻力,忽略细线与钉子相互作用时的能量损失.求:
(1)小球在A处时,所受外力的最小值;
(2)小球摆到B处前瞬间的向心加速度;
(3)小球与挡板垂直撞击过程中,挡板对小球做的功.
如图所示,一质量M=1.0kg的砂摆,用轻绳悬于天花板上O点。另有一玩具枪能连续发射质量m=0.01kg、速度v=4.0m/s的小钢珠。现将砂摆拉离平衡位置,由高h=0.20m处无初速度释放,恰在砂摆向右摆到最低点时,玩具枪发射的第一颗小钢珠水平向左射入砂摆,二者在极短时间内达到共同速度。不计空气阻力,取g =10m/s2。
(1)求第一颗小钢珠射入砂摆前的瞬间,砂摆的速度大小v0;
(2)求第一颗小钢珠射入砂摆后的瞬间,砂摆的速度大小v1;
(3)第一颗小钢珠射入后,每当砂摆向左运动到最低点时,都有一颗同样的小钢珠水平向左射入砂摆,并留在砂摆中。当第n颗小钢珠射入后,砂摆能达到初始释放的高度h,求n。
如图1所示,两根足够长平行金属导轨MN、PQ相距为L,导轨平面与水平面夹角为,金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m。导轨处于匀强磁场中,磁场的方向垂直于导轨平面斜向上,磁感应强度大小为B。金属导轨的上端与开关S、定值电阻R1和电阻箱R2相连。不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g。现在闭合开关S,将金属棒由静止释放。
(1)判断金属棒ab中电流的方向;
(2)若电阻箱R2接入电路的阻值为0,当金属棒下降高度为h时,速度为v,求此过程中定值电阻上产生的焦耳热Q;
(3)当B=0.40T,L=0.50m,37°时,金属棒能达到的最大速度vm随电阻箱R2阻值的变化关系,如图2所示。取g = 10m/s2,sin37°= 0.60,cos37°= 0.80。求阻值R1和金属棒的质量m。
已知地球质量为M,半径为R,自转周期为T,引力常量为G。如图所示,A为在地面附近绕地球做匀速圆周运动的卫星,B为地球的同步卫星。
(1)求卫星A运动的速度大小v;
(2)求卫星B到地面的高度h。
如图所示为半径R=0.50m的四分之一圆弧轨道,底端距水平地面的高度h=0.45m。一质量m=1.0kg的小滑块从圆弧轨道顶端A由静止释放,到达轨道底端B点的速度v = 2.0m/s。忽略空气的阻力。取g=10m/s2。求:
(1)小滑块在圆弧轨道底端B点受到的支持力大小FN;
(2)小滑块由A到B的过程中,克服摩擦力所做的功W;
(3)小滑块落地点与B点的水平距离x。
质量为2kg的物体在水平推力F的作用下沿水平面作直线运动,一段时间后撤去F,其运动的v-t图象如图。g取10m/s2,求:
⑴物体与水平面间的动摩擦因数μ;
⑵水平推力F的大小;
⑶在0~6s内物体运动平均速度的大小。