某厂商投产一种新型科技产品,每件制造成本为18元,试销过程中发现,每月销售量 y(万件)与销售单价 x(元)之间的关系可以近似地看作一次函数 y=﹣2 x+100
(1)写出每月的利润 L(万元)与销售单价 x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得312万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
(3)根据相关部门规定,这种科技产品的销售单价不能高于32元,如果厂商要获得每月不低于312万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?
如图,在△ ABC中,∠ ABC=90°,以 AB的中点 O为圆心, OA为半径的圆交 AC于点 D, E是 BC的中点,连结 DE、 OE.
(1)判断 DE与⊙ O的位置关系,并说明理由.
(2)求证: BC 2=2 CD• OE.
为了了解某市八年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,某记者开展了一次抽样调査,根据调查结果绘制了如下尚不完整的统计图
根据以上信息解答下列问题
(1)这次接受调查的八年级学生总人数为多少?
(2)扇形统计图中"动画"对应扇形的圆心角度数为多少?
(3)请补全条形统计图.
如图,在梯形 ABCD中, AD∥ BC,∠ ADC=90°,∠ B=30°, CE⊥ AB,垂足为点 E.若 AD=1, AB=4 ,求△ BCE外接圆的面积.
如图为甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为 m,乙转盘中指针所指区域内的数字为 n(若指针指在边界线上时,重转一次,直到指针指向一个区域为止)
(1)请你用画树状图或列表的方法求出 m和 n的乘积为偶数的概率;
(2)直接写出点( m, n)落在函数 y=﹣4 x图象上的概率.