用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)
A方法:剪6个侧面; B方法:剪4个侧面和5个底面。
现有38张硬纸板,裁剪时x张用A方法,其余用B方法。
(1)用x的代数式分别表示裁剪出的侧面和底面的个数;
(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
如图,在平行四边形中,对角线
相交于点
,
过点
且分别交
于点
.求证:
.
已知是整数,
能被3整除,求证:
和
都能被3整除.(用反证法证明)
如图,在中,
两点分别在
和
上,求证:
不可能互相平分.
解决下面问题:
如图,在△ABC中,∠A是锐角,点D,E分别在AB,AC上,且,BE与CD相交于点O,探究BD与CE之间的数量关系,并证明你的结论.
小新同学是这样思考的:
在平时的学习中,有这样的经验:假如△ABC是等腰三角形,那么在给定一组对应条件,如图a,BE,CD分别是两底角的平分线(或者如图b,BE,CD分别是两条腰的高线,或者如图c,BE,CD分别是两条腰的中线)时,依据图形的轴对称性,利用全等三角形和等腰三角形的有关知识就可证得更多相等的线段或相等的角.这个问题也许可以通过添加辅助线构造轴对称图形来解决.
图a图b图c
请参考小新同学的思路,解决上面这个问题..
在平面直角坐标系xoy中,等腰三角形ABC的三个顶点A(0,1),点B在x轴的正半轴上,∠ABO=30°,点C在y轴上.
(1)直接写出点C的坐标为;
(2)点P关于直线AB的对称点P′在x轴上,AP=1,在图中标出点P的位置并说明理由;
(3)在(2)的条件下,在y轴上找到一点M,使PM+BM的值最小,则这个最小值为.