小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(B,F,D在同一条直线上).一直小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:,结果保留整数)
佳佳果品店刚试营业,就在批发市场购买某种水果销售,第一次用1200元购进若干千克水果,并以每千克定价7元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用1500元所购买的数量比第一次多10千克.
(1)求第一次该种水果的进价是每千克多少元?
(2)佳佳果品店在第二次进货后,以每千克定价7元售出200千克水果后,因出现高温天气,水果不易保鲜,为减少损失,便以定价的4折售完剩余的水果,该果品店在这两次销售中,总体上是盈利还是亏损(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?
如图,在平面直角坐标系中,反比例函数的图象和矩形ABCD在第一象限,AD平行于
轴,且AB=2,AD=4,点A的坐标为(2,6).
(1)直接写出B、C、D三点的坐标.
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.
如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC的外角的平分线,BE⊥AE
(1)求证:DA⊥AE;
(2)试判断AB与DE是否相等?并证明你的结论.
已知正比例函数和反比例函数的图象交于点A(m,一2).
(1)求反比例函数的解析式;
(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量的取值范围;
(3)若双曲线上点c(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.
如图,在□ABCD中,AE平分∠BAD交DC于点E,AD=5cm,AB=8cm.
(1)求EC的长;
(2)作∠BCD的平分线交AB于F,求证:四边形AECF为平行四边形