已知抛物线y=ax2+2x+c与x轴交于A(1,0)和点B,与y轴交于点C(0,-3).
(1) 求抛物线的解析式.
(2) 如图1,已知点H的坐标为(0,1),设点M为y轴左侧抛物线上的一个动点,试猜想:是否存在这样的点M,使的值最大,如果存在,请求出点M的坐标;如果不存在,请说明理由.
(3) 如图2,过x轴上点E(-2,0)作交抛物线于点D,在y轴上找一点F,使
的周长最小,求出此时点F的坐标;
(4) 如图3,已知点N(0,-1).问在抛物线上是否存在点Q(点Q在y轴的左侧),使得△QNC的面积与△QNA的面积相等?若存在,求出点Q的坐标,若不存在,请说明理由;
(本题6分)如图所示,小杨在处州公园的A处正面观测电子屏幕,测得屏幕上端C处的仰角为27º,接着他正对电子屏幕方向前进7m到达B处,又测得该屏幕上端C处的仰角为45º.已知电子屏幕的下端离开地面距离DE为4m,小杨的眼睛离地面1.60m,电子屏幕的上端与墙体的顶端平齐.求电子屏幕上端与下端之间的距离CD(结果精确到0.1m,参考数据:≈1.41,sin27°≈0.45 ,cos27°≈0.89 ,tan27°≈0.51).
(本题6分)在下列四个条件中:①AB=DC;②BE=CE;③∠B=∠C;④∠BAE=∠CDE.请
选出两个作为条件,得出△AED是等腰三角形(写出一个即可),并加以证明.
已知: ▲;
求证:△AED是等腰三角形.
证明:
问题情景::狼山水上乐园门票价格如下表所示:
购票人数 |
1~50人 |
51~100人 |
100人以上 |
每人门票价 |
13元 |
11元 |
9元 |
某校七年级(1),(2)两个班共104人去狼山水上乐园春游,其中(1)班人数较少,不到50人,(2)班人数较多,超过50人.经估算如果两班都以班为单位分别购票,则一共应付1240元。
问题:(1)请算出两个班各有多少名学生?
(2)想一想:你认为他们如何购票比较合算?
(3) (1)班先到达乐园,想要单独购票,你能帮他们想出一个比较经济的购票方案吗?
有大小两种货车,5辆大车与6辆小车一次可运货35吨,两辆大车与3辆小车一次可运15.5吨,求7辆大车和8辆小车一次可运货多少吨?
代数式ax+by,当x=5,y=2时,它的值是7;当x=3,y=1时,它的值是4,试求x=7,y=-5时代数式ax-by的值。