在数列中,
,且对任意的
,
成等比数列,其公比为
.
(1)若=2(
),求
;
(2)若对任意的,
,
,
成等差数列,其公差为
,设
.
① 求证:成等差数列,并指出其公差;
② 若=2,试求数列
的前
项的和
.
三角形ABC的三个顶点A(1,3)B(1,﹣3)C(3,3),求
(Ⅰ)BC边上中线AD所在直线的方程;
(Ⅱ)三角形ABC的外接圆O1的方程;
(Ⅲ)已知圆O2:,求圆心在x-y-4=0,且过圆O1与圆O2交点的圆的方程。
如图,棱锥的底面
是矩形,
⊥平面
,
.
(1)求证:BD⊥平面PAC;
(2)求二面角P—CD—B的大小;
(3)求点C到平面PBD的距离.
已知集合A={x|x2﹣2x﹣3≤0},B={x|x2﹣2mx+m2﹣9≤0},m∈R.
(1)若m=3,求A∩B;
(2)若A⊆B,求实数m的取值范围.
选修4-5:不等式选讲
设函数.
(Ⅰ)解不等式;
(Ⅱ)若对一切实数
均成立,求实数
的取值范围.
选修4—4:坐标系与参数方程
平面直角坐标系中,直线的参数方程是
(
为参数),以坐标原点为极点,
轴的正半轴为极轴,建立极坐标系,已知曲线
的极坐标方程为
.
(Ⅰ)求直线的极坐标方程;
(Ⅱ)若直线与曲线
相交于
、
两点,求
.