某固定在墙上的广告金属支架如图所示,根据要求,长要超过4米(不含4米),
为
的中点,
到
的距离比
的长小1米,
(1)若,将支架的总长度表示为
的函数,并写出函数的定义域.(注:支架的总长度为图中线段
、
和
的长度之和)
(2)如何设计、
的长,可使支架总长度最短.
已知函数(其中
为自然对数的底).
(1)求函数的最小值;
(2)若,证明:
已知过点的直线
与抛物线
相交于
、
两点,
、
分别是该抛物线在
、
两点处的切线,
、
分别是
、
与直线
的交点.
(1)求直线的斜率的取值范围;
(2)试比较与
的大小,并说明理由.
已知函数的图像经过点
和
.
(1)求实数和
的值;
(2)当为何值时,
取得最大值.
将一颗质地均匀的正方体骰子(六个面的点数分别为)先后抛掷两次,记第一次出现的点数为
,第二次出现的点数为
.
(1)求事件“”的概率;(2)求事件“
”的概率.
在平面直角坐标系中,已知圆心在直线
上,半径为
的圆C经过坐标原点O,椭圆
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足,求点P