游客
题文

某地区为了了解某地区高中生的身体发育情况,对某一中学的随机抽取的50名学生的体重进行了测量,结果如下:(单位:kg)
42,38,29,36,41,43,54,43,34,44,40,59,39,42,44,50,37,44,45,29,48,45,53,48,37,28,46,50,37,44,
42,39,51,52,62,47,59,46,45,,67,53,49,65,47,54,63,58,43,46,58.

分组
频数
频率
频率/组距
[27,32)
 
0.06
 
[32,37)
 
0.06
 
[37,42)
9
 
 
[42,47)
 
 
0.064
[47,52)
7
 
 
[52,57)
5
 
 
[57,62)
4
 
 
[62,67)
 
0.06
 

 
(1)若以组距为5,完成下面样本频率分布表:
(2)根据(1)中的频率分布表,画出频率分布直方图;
(3)若本地区学生总人数为3000人,试根据抽样比例,估计本地区学生体重在区间[37,57]内所占的人数约为多少人?

科目 数学   题型 解答题   难度 较难
知识点: 误差估计
登录免费查看答案和解析
相关试题

已知△ABC中的内角A,B,C对边分别为a,b,c,sin2C+2cos2C+1=3,c=.
(1)若cosA=,求a;
(2)若2sinA=sinB,求△ABC的面积.

已知圆x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m∈R).
(1)求证:不论m取什么值,圆心在同一直线l上;
(2)与l平行的直线中,哪些与圆相交,相切,相离.

已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)求证:不论m取什么实数,直线l与圆C恒交于两点;
(2)求直线被圆C截得的弦长最小时直线l的方程.

已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y-4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;
(3)在(2)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求|PB|+|PQ|的最小值及此时点P的坐标.

已知圆C过点P(1,1),且与圆M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(1)求圆C的方程;
(2)过点P作两条相异直线分别与圆C相交于A、B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号