父亲节快到了,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同(分别用A,B,C表示芝麻馅、水果馅、花生馅的大汤圆)。
(1)求爸爸吃前两个汤圆刚好都是花生馅的概率;
(2)若给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生的可能性是否会增大?请说明理由.
如图,抛物线与
轴交于
两点,与
轴交于
点.
(1)请求出抛物线顶点的坐标(用含
的代数式表示),
两点的坐标;
(2)经探究可知,与
的面积比不变,试求出这个比值;
(3)是否存在使为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.
如图,已知BC是⊙O的直径,AH⊥BC,垂足为D,点A为弧EF的中点,BF交AD于点E,且BE·EF=32,AD=6.
(1)求证:AE=BE;
(2)求DE的长;
(3)求BD的长 .
如图,已知二次函数的图象与
轴相交于两个不同的点
、
,与
轴的交点为
.设
的外接圆的圆心为点
.
(1)求与
轴的另一个交点D的坐标;
(2)如果恰好为
的直径,且
的面积等于
,求
和
的值.
我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售。按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满。根据下表提供的信息,解答以下问题:
脐橙品种 |
A |
B |
C |
每辆汽车运载量(吨) |
6 |
5 |
4 |
每吨脐橙获得(百元) |
12 |
16 |
10 |
(1)设装运A种脐橙的车辆数为,装运B种脐橙的车辆数为
,求
与
之间的函数关系式;
(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值。