如图,抛物线y=ax2+bx+c的顶点为C(0,﹣),与x轴交于点A、B,连接AC、BC,得等边△ABC.T点从B点出发,以每秒1个单位的速度向点A运动,同时点S从点C出发,以每秒
个单位的速度向y轴负方向运动,TS交射线BC于点D,当点T到达A点时,点S停止运动.设运动时间为t秒.
(1)求二次函数的解析式;
(2)设△TSC的面积为S,求S关于t的函数解析式;
(3)以点T为圆心,TB为半径的圆与射线BC交于点E,试说明:在点T运动的过程中,线段ED的长是一定值,并求出该定值.
已知,平面直角坐标系中,矩形OABC的边OC在x轴正半轴上,边OA在y轴正半轴上,B点的坐标为(4,3).将△AOC沿对角线AC所在的直线翻折,得到△AO’C,点O’为点O的对称点,CO’与AB相交于点E(如图①).
(1)试说明:EA=EC;
(2)求直线BO’的解析式;
(3)作直线OB(如图②),直线l平行于y轴,分别交x轴、直线OB、O’B于点P、M、N,设P点的横坐标为m (m>0)。y轴上是否存在点F,使得ΔFMN为等腰直角三角形?若存在,请求出此时m的值;若不存在,请说明理由.
右图是反映今年泰州市溱湖风景区划船比赛中,甲、乙两船在比赛时,路程y(千米)
与时间x(小时)函数图象,请根据图象所提供的信息解答下列问题:
(1)先到达终点的是船;该船的速度是每小时千米;
(2)在哪一段时间,甲船的速度大于乙船的速度?
(3)点P是两条线的一个交点,它表示;你能求出该点所对应的时间吗?
“节能环保,低碳生活”是我们倡导的一种生活方式.某家电商场计划用11.8万元购
进节能型电视机、洗衣机和空调共40台.三种家电的进价及售价如右表所示:
进价(元/台) |
售价(元/台) |
|
电视机 |
5000 |
5500 |
洗衣机 |
2000 |
2160 |
空调 |
2400 |
2700 |
(1)在不超出现有资金的前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机数量的三倍,请问有哪几种进货方案?
(2)若三种电器在活动期间全部售出,则(1)中哪种方案可使商场获利最多?最大利润是多少
为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格
可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.
(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;
(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?
如图,直线l1的解析式为y=-x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直
线l1交于点C(-1,m),且与x轴交于点A
(1)求点C的坐标及直线l2的解析式;(2)求△ABC的面积.