如图△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,△DEA 绕点A旋转,边AD、AE与BC分别与AD、AE相交于点F、G,CB=5.
回答下列问题:
(1)求证:△GAF∽△GBA;
(2)求证:AF2=FG•FC;
(3)设y=AF2+AG2,FG=x,求y与x的函数关系式;(不要求写出自变量的取值范围)
(4)探究BF2、FG2、GC2之间的关系,证明你的结论.
甲乙两地相距500千米,汽车从甲地以每小时80千米的速度开往乙地.
(1)写出汽车离乙地的距离s(千米)与开出时间t(小时)之间的函数关系式,并指出是不是一次函数;
(2)写出自变量的取值范围;
(3)汽车从甲地开出多久,离乙地为100千米?
某商店出售某商品时,在进价的基础上加一定的利润,其数量x与售价y的关系如下表所示.请根据表中所提供的信息,列出y与x的函数关系式并求出当数量是2.5千克时的售价.
数量x(千克) |
1 |
2 |
3 |
4 |
… |
售价y(元) |
8+0.4 |
16+0.8 |
24+1.2 |
32+1.6 |
… |
如图,在△ABC中,∠B与∠C的平分线交于点P,设∠A=x°,∠BPC=y°,当∠A变化时,求y与x之间的函数关系式,并判断y是不是x的一次函数,指出自变量的取值范围.
等腰三角形的周长为12,底边长为y,腰长为x,求y与x之间的函数关系式,并写出自变量的取值范围.
写出一次函数和正比例函数的表达式,并指出它们的区别和联系.