某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需要购买行李票.已知行李费y(元)是行李质量x(kg)之间的函数表达式为y=kx+b.这个函数的图像如图所示:
(1)求k和b的值;
(2)求旅客最多可免费携带行李的质量;
(3)求行李费为4~15元时,旅客携带行李的质量为多少?
在直角坐标系xOy中,直线l过(1,3)和(3,1)两点,且与x轴,y轴分别交于A,B两点.
(1)求直线l的函数关系式;
(2)求△AOB的面积.
(本小题满分6分)
在如图所示的方格纸中,△ABC的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立直角坐标系.
(1)作出△ABC关于y轴对称的△A1B1C1,其中A,B,C分别和A1,B1,C1对应;
(2)平移△ABC,使得A点在x轴上,B点在y轴上,平移后的三角形记为△A2B2C2,作出平移后的△A2B2C2,其中A,B,C分别和A2,B2,C2对应;
(3)填空:在(2)中,设原△ABC的外心为M,△A2B2C2的外心为M,则M与M2之间的距离为.
推理证明(本小题满分6分)
如图,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.
(1)求证:△ABC≌△ADE;
(2)如果∠AEC=75°,将△ADE绕着点A旋转一个锐角后与△ABC重合,求旋转角的大小.
运算求解(本小题满分10分)
解方程或不等式组;
(1)
(2)
计算化简(本小题满分10分)
(1)
(2)