如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).
(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;
(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?
(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?
(本小题满分8分)为进一步弘扬祖国优秀传统文化,历下区教育局主办了“‘首善奖’历下区青少年书法大赛”.某校有2位同学获得一等奖,3位同学获得二等奖,随机抽取获奖同学谈谈他们的参赛体会.
(1)抽取一位同学谈体会,请直接写出该同学是二等奖获得者的概率;
(2)抽取两位同学谈体会,求两位同学分别是一等奖和二等奖获得者的概率.(用树状图或列表法求解)
应用题分式方程(本小题满分8分)
我区某校九年级的同学利用清明假期外出踏青、赏春.从学校到景区共10千米,一部分同学骑自行车先出发,10分钟后,其余同学乘汽车出发,结果他们同时到达集合地点.已知汽车的速度是骑车同学速度的2倍,求两部分同学分别每小时走多少千米?
(本小题满分7分)
(1)如图,四边形ABCD、四边形AEFD是平行四边形.求证:△ABE≌△DCF.
(2)如图,CB是⊙O的直径,P是CB延长线上一点,PB=2,PA切⊙O于A点,PA=4.求⊙O的半径.
(本小题满分7分)
(1)计算:;
(2)解不等式组.
如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连结AB.点P从点B出发,以每秒4个单位长度的速度沿BC方向运动,到点C停止.当点P与B、C两点不重合时,作PD⊥BC交AB于D,作DE⊥AC于E.F为射线CB上一点,
且∠CEF=∠ABC.设点P的运动时间为x(秒).
(1)用含有x的代数式表示CE的长;
(2)求点F与点B重合时x的值;
(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式;
(4)当x为某个值时,沿PD将以D、E、F、B为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x值.