设二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,f(x)的最小值为0,且f(x﹣1)=f(﹣x﹣1)恒成立;
②当x∈(0,5)时,x≤f(x)≤2|x﹣1|+1恒成立.
(1)求f(1)的值;
(2)求f(x)的解析式;
(3)求最大的实数m(m>1),使得存在实数t,只要当x∈[1,m]时,就有f(x+t)≤x成立.
(本小题满分12分)
已知函数
(Ⅰ)若1是关于x的方程的一个解,求t的值;
(Ⅱ)当时,解不等式
;
(Ⅲ)若函数在区间
上有零点,求t的取值范围.
(本小题满分10分)已知函数(a>0,且a≠1),
=
.
(1)函数的图象恒过定点A,求A点坐标;
(2)若函数的图像过点(2,
),证明:方程
在
(1,2)上有唯一解.
(本小题满分12分)如图,有一块矩形空地ABCD,要在这块空地上开辟一个内接四边形EFGH为绿地,使其四个顶点分别落在矩形的四条边上.已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,绿地EFGH面积为y.
(1)写出y关于x的函数解析式,并求出它的定义域;
(2)当AE为何值时,绿地面积y最大?并求出最大值。
(本小题满分12分)已知为定义在
上的奇函数,当
时,函数解析式为
.
(Ⅰ)求在
上的解析式;
(Ⅱ)求在
上的最值.
(本小题满分12分)求值:
(1);
(2)设,求
的值.