如图,在多面体中,
平面
,
,且
是边长为
的等边三角形,
,
与平面
所成角的正弦值为
.
(Ⅰ)若是线段
的中点,证明:
面
;
(Ⅱ)求二面角的平面角的余弦值.
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知函数=
.
(1)判断函数的奇偶性,并证明;
(2)求的反函数
,并求使得函数
有零点的实数
的取值范围.
(本题满分12分)
已知集合,实数
使得集合
满足
,
求的取值范围.
如果函数的定义域为
,对于定义域内的任意
,存在实数
使得
成立,则称此函数具有“
性质”.
(1)判断函数是否具有“
性质”,若具有“
性质”求出所有
的值;若不具有“
性质”,请说明理由.
(2)已知具有“
性质”,且当
时
,求
在
上的最大值.
(3)设函数具有“
性质”,且当
时,
.若
与
交点个数为2013个,求
的值.
数列的前
项和记为
,且满足
.
(1)求数列的通项公式;
(2)求和;
(3)设有项的数列
是连续的正整数数列,并且满足:
.
问数列最多有几项?并求这些项的和.
已知圆.
(1)直线:
与圆
相交于
、
两点,求
;
(2)如图,设、
是圆
上的两个动点,点
关于原点的对称点为
,点
关于
轴的对称点为
,如果直线
、
与
轴分别交于
和
,问
是否为定值?若是求出该定值;若不是,请说明理由.