设 0 < α < π < β < 2 π ,向量 a ⇀ = ( 1 , 2 ) , b ⇀ = ( 2 cos α , sin α ) , c ⇀ = ( sin β , 2 cos β ) , d ⇀ = ( cos β , - 2 sin β ) . (1)若 a ⇀ ⊥ b ⇀ ,求 α ; (2)若 | c ⇀ + d ⇀ | = 3 ,求 sin β + cos β 的值; (3)若 tan α tan β = 4 ,求证: b ⇀ / / c ⇀ .
(10分)已知集合,集合,集合 (1)求 (2)若,求实数的取值范围;
(14分)已知函数 (1) 当a= -1时,求函数的最大值和最小值; (2) 求实数a的取值范围,使y=f(x)在区间上是单调函数 (3) 求函数f(x)的最小值g(a),并求g(a)的最大值.
已知设 (1)求函数的定义域; (2)判断函数的奇偶性,并予以证明;
(某商品进货单价为元,若销售价为元,可卖出个,如果销售单价每涨元,销售量就减少个,为了获得最大利润,则此商品的最佳售价应为多少?)
化简(1) (2)已知求的值。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号