设 0 < α < π < β < 2 π ,向量 a ⇀ = ( 1 , 2 ) , b ⇀ = ( 2 cos α , sin α ) , c ⇀ = ( sin β , 2 cos β ) , d ⇀ = ( cos β , - 2 sin β ) . (1)若 a ⇀ ⊥ b ⇀ ,求 α ; (2)若 | c ⇀ + d ⇀ | = 3 ,求 sin β + cos β 的值; (3)若 tan α tan β = 4 ,求证: b ⇀ / / c ⇀ .
设函数,,其中为实数,若在上是单调减函数,且在上有最小值,求的取值范围.
已知数列{}满足+=2n+1() (1)求出,,的值; (2)由(1)猜想出数列{}的通项公式,并用数学归纳法证明.
现有5名男司机,4名女司机,需选派5人运货到吴忠. (1)如果派3名男司机、2名女司机,共多少种不同的选派方法? (2)至少有两名男司机,共多少种不同的选派方法?
复数,. (1)为何值时,是纯虚数?取什么值时,在复平面内对应的点位于第四象限? (2)若()的展开式第3项系数为40,求此时的值及对应的复数的值.
已知.求证:.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号