游客
题文

如图,将正 n 边形绕点 A 顺时针旋转 60 ° 后,发现旋转前后两图形有另一交点 O ,连接 AO ,我们称 AO 为"叠弦";再将"叠弦" AO 所在的直线绕点 A 逆时针旋转 60 ° 后,交旋转前的图形于点 P ,连接 PO ,我们称 OAB 为"叠弦角", ΔAOP 为"叠弦三角形".

[探究证明]

(1)请在图1和图2中选择其中一个证明:"叠弦三角形" ( ΔAOP ) 是等边三角形;

(2)如图2,求证: OAB = OAE '

[归纳猜想]

(3)图1、图2中的"叠弦角"的度数分别为       

(4)图 n 中,"叠弦三角形"   等边三角形(填"是"或"不是" )

(5)图 n 中,"叠弦角"的度数为   (用含 n 的式子表示)

科目 数学   题型 解答题   难度 中等
知识点: 几何变换综合题 全等三角形的判定与性质 等边三角形的判定
登录免费查看答案和解析
相关试题

解方程:

化简或求值
(1)(1+)÷
(2)1﹣÷,其中a=﹣,b=1.

四边形ABCD为菱形,点P为对角线BD上的一个动点.

(1)如图1,连接AP并延长交BC的延长线于点E,连接 PC,求证:∠AEB=∠PCD.
(2)如图1,当PA=PD且PC⊥BE时,求∠ABC的度数.
(3)连接AP并延长交射线BC于点E,连接 PC,若∠ABC=90°且△PCE是等腰三角形,求∠PEC的度数.

如图,直线l过点A(a,0)和点B(0,b)(其中a>0,b>0).反比例函数y=(k>0)的图象与直线l交于C、D两点,连接OC、OD.

(1)若a+b=10,△AOB的面积为S,问:当b为何值时,S取最大值?并求出这个最大值;
(2)当S取最大值时,若C,D恰好是线段AB的三等分点,求k的值.

已知,如图,直线MN交⊙O于A,B两点,AC是⊙O的直径,DE切⊙O于点D,且DE⊥MN于点E.

(1)求证:AD平分∠CAM.
(2)若DE=6,AE=3,求⊙O的半径.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号