设抛物线的解析式为 ,过点 作 轴的垂线,交抛物线于点 ;过点 , 作 轴的垂线,交抛物线于点 ; ;过点 , 为正整数)作 轴的垂线,交抛物线于点 ,连接 ,得 △ .
(1)求 的值;
(2)直接写出线段 , 的长(用含 的式子表示);
(3)在系列 △ 中,探究下列问题:
①当 为何值时, △ 是等腰直角三角形?
②设 , 均为正整数),问:是否存在 △ 与 △ 相似?若存在,求出其相似比;若不存在,说明理由.
已知等腰△ABC的顶角∠A=36°.
(1)作底角∠ABC的平分线BD,交AC于点D;(用尺规作图,不写作法,但保留作图痕迹)
(2)通过计算,说明△ABD和△BDC都是等腰三角形.
画出将左图绕点O逆时针旋转90°后的图形,画出将右图以直线MN为对称轴翻折后的图形.
如图,矩形 在平面直角坐标系 中,点 在 轴的正半轴上,点 在 轴的正半轴上, , ,若抛物线的顶点在 边上,且抛物线经过 两点,直线 交抛物线于点 .
(1)求抛物线的解析式;
(2)求点
的坐标;
(3)若点
在抛物线上,点
在
轴上,是否存在以
为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.
已知:如图,AC⊙O是的直径,BC是⊙O的弦,点P是⊙O外一点,∠PBA=∠C.
(1)求证:PB是⊙O的切线;
(2)若OP∥BC,且OP=8,BC=2.求⊙O的半径.
某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.
(1)求打折前每本笔记本的售价是多少元?
(2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?