某年级共有300名学生.为了解该年级学生,两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.
.课程成绩的频数分布直方图如下(数据分成6组:,,,,,
.课程成绩在这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5
.,两门课程成绩的平均数、中位数、众数如下:
课程 |
平均数 |
中位数 |
众数 |
75.8 |
84.5 |
||
72.2 |
70 |
83 |
根据以上信息,回答下列问题:
(1)写出表中的值;
(2)在此次测试中,某学生的课程成绩为76分,课程成绩为71分,这名学生成绩排名更靠前的课程是 (填“”或“” ,理由是 ,
(3)假设该年级学生都参加此次测试,估计课程成绩超过75.8分的人数.
已知关于、
的方程组
的解都是非正数,求
的取值范围.
(1)解不等式组,并把解集在数轴上表示出来.
(2)先化简,再求值:,其中x是(1)中的整数解.
解方程:
分解因式:(1);(2)
【问题提出】
规定:四条边对应相等,四个角对应相等的两个四边形全等.
我们借助学习“三角形全等的判定”获得的经验与方法对“全等四边形的判定”进行探究.
【初步思考】
在两个四边形中,我们把“一条边对应相等”或“一个角对应相等”称为一个条件,满足4个条件的两个四边形不一定全等,如边长相等的正方形与菱形就不一定全等.类似地,我们容易知道两个四边形全等至少需要5个条件.
【深入探究】
小莉所在学习小组进行了研究,她们认为5个条件可分为以下四种类型:
Ⅰ一条边和四个角对应相等;
Ⅱ二条边和三个角对应相等;
Ⅲ三条边和二个角对应相等;
Ⅳ四条边和一个角对应相等.
(1)小明认为“Ⅰ一条边和四个角对应相等”的两个四边形不一定全等,请你举例说明.
(2)小红认为“Ⅳ四条边和一个角对应相等”的两个四边形全等,请你结合下图进行证明.
已知:如图,.
求证:.
证明:
(3)小刚认为还可以对“Ⅱ二条边和三个角对应相等”进一步分类,他以四边形和四边形
为例,分为以下四类:
①,
,
,
,
;
②,
,
,
,
;
③,
,
,
,
;
④,
,
,
,
;
其中能判定四边形和四边形
全等的是(填序号),概括可得“全等四边形的判定方法”,这个判定方法是.
(4)小亮经过思考认为也可以对“Ⅲ三条边和二个角对应相等”进一步分类,请你仿照小刚的方法先进行分类,再概括得出一个全等四边形的判定方法.